如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为______cm(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式.
(4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.
某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:
A:陇南市宕昌县哈达铺红军长征纪念馆;
B:陇南市两当兵变纪念馆;
C:甘南州迭部县腊子口战役纪念馆;
D:张掖市高台县中国工农红军西路军纪念馆.
小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.
如图,在 中, ,点D,E分别是AC和AB的中点.求证: .
如图,在直角坐标系中,四边形 是平行四边形,经过 , , 三点的抛物线 与 轴的另一个交点为 ,其顶点为 ,对称轴与 轴交于点 .
(1)求这条抛物线对应的函数表达式;
(2)已知 是抛物线上的点,使得 的面积是 的面积的 ,求点 的坐标;
(3)已知 是抛物线对称轴上的点,满足在直线 上存在唯一的点 ,使得 ,求点 的坐标.
如图, 内接于 , 平分 交 边于点 ,交 于点 ,过点 作 于点 ,设 的半径为 , .
(1)过点 作直线 ,求证: 是 的切线;
(2)求证: ;
(3)设 ,求 的值(用含 的代数式表示).
如图,著名旅游景区 位于大山深处,原来到此旅游需要绕行 地,沿折线 方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从 地到景区 的笔直公路.请结合 , , 千米, , 等数据信息,解答下列问题:
(1)公路修建后,从 地到景区 旅游可以少走多少千米?
(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加 ,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?