(本小题满分13分)设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA 的中点为B(O为坐标原点),如图.若抛物线C2:
与y轴的交点为B,且经过F1,F2点.
(1)求椭圆C1的方程;
(2)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求
面积的最大值.
已知数列中,
且点
在直线
上.
(1)求数列的通项公式;
(2)若函数求函数
的最小值;
(3)设表示数列
的前n项和.试问:是否存在关于
的整式
,使得
对于一切不小于2的自然数
恒成立? 若存在,写出
的解析式,并加以证明;若不存在,试说明理由.
(本小题满分12分)如图,已知直线l:与抛物线C:
交于A,B两点,
为坐标原点,
。
(Ⅰ)求直线l和抛物线C的方程;
(Ⅱ)抛物线上一动点P从A到B运动时,
求△ABP面积最大值.
(本小题满分12分)聊城市政府要用三辆汽车从新市政府把工作人员接到老市政府,已知从新市政府到老市政府有两条公路,汽车走公路①堵车的概率为,不堵车的概率为
;汽车走公路②堵车的概率为
,不堵车的概率为
.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.
(本小题满分12分)在△ABC中角A、B、C的对边分别为设向量
(1)求的取值范围;
(2)若试确定实数
的取值范围.
(本小题满分12分)
已知,其中
是自然常数,
(1)讨论时,
的单调性、极值;
(2)求证:在(1)的条件下,;
(3)是否存在实数,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.