在一个不透明的盒子里,装有三个分别标有1、2、3的小球,它们的形状、大小、质地等完全相同.小明和小红做一个游戏,小明先摸出一球,记着编号后放入,小红再摸出一球,记住编号.
(1)求小明和小红都摸出2号球的概率;
(2)若小明摸出的球的编号与小红摸出的球的编号的乘积是质数,则小明获胜,是合数,则小红胜,既不是质数又不是合数,则重新游戏.你认为这个游戏规则合理吗?请说明理由.
如图,平面直角坐标系中,线段 的端点为 .
(1)求 所在直线的解析式;
(2)某同学设计了一个动画:
在函数 中,分别输入 和 的值,使得到射线 ,其中 .当 时,会从C处弹出一个光点 ,并沿 飞行;当 时,只发出射线而无光点弹出.
①若有光点 弹出,试推算 应满足的数量关系;
②当有光点 弹出,并击中线段 上的整点(横、纵坐标都是整数)时,线段 就会发光.求此时整数 的个数.
如图,某水渠的横断面是以 为直径的半圆 ,其中水面截线 .嘉琪在 处测得垂直站立于 处的爸爸头顶 的仰角为 ,点 的俯角为 .已知爸爸的身高为 .
(1)求 的大小及 的长;
(2)请在图中画出线段 ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).
(参考数据: 取 , 取 )
如图,点 在抛物线 上,且在 的对称轴右侧.
(1)写出 的对称轴和 的最大值,并求 的值;
(2)坐标平面上放置一透明胶片,并在胶片上描画出点 及 的一段,分别记为 .平移该胶片,使 所在抛物线对应的函数恰为 .求点 移动的最短路程.
发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.
验证 如, 为偶数.请把 的一半表示为两个正整数的平方和;
探究 设“发现”中的两个已知正整数为 ,请论证“发现”中的结论正确.
某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为 分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图,
(1)分别求出甲、乙三项成绩之和,并指出会录用谁;
(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.