在四棱锥中,底面
为直角梯形,
,
侧面
底面
,
,
.
(1)若中点为
.求证:
;
(2)若,求直线
与平面
所成角的正弦值.
.(本题满分12分)若关于x的方程x2+2ax+2-a=0有两个不相等的实根,求分别满足下列条件的a的取值范围.
(1)方程两根都小于1;
(2)方程一根大于2,另一根小于2.
(本小题满分12分)设集合A={x|x2<4},B={x|1<}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集为B,求a,b的值.
(本小题满分10分)(1)将形如的符号称二阶行列式,现规定
=a11a22-a12a21,试计算二阶行列式
的值;
(2)已知。
已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是k1,k2,且k1·k2=-.
(1)求动点P的轨迹C的方程;
(2)已知直线l:y=kx+m与曲线C交于M,N两点,且直线BM、BN的斜率都存在,并满足kBM·kBN=-,求证:直线l过原点.
如图,在四棱锥中,底面
四边长为1的菱形,
,
,
,
为
的中点,
为
的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。