如图1,在直角梯形中,
,
,
,
为线段
的中点.将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(Ⅰ) 求证:平面
;
(Ⅱ) 求二面角的余弦值.
(本小题满分12分)设函数(k为常数,e=2.718 28…是自然对数的底数).
(1)当时,求函数f(x)的单调区间;
(2)若函数在(0,2)内存在两个极值点,求k的取值范围.
(本小题满分12分)已知曲线在点
处的切线的斜率为1.
(1)若函数f(x)的图象在上为减函数,求
的取值范围;
(2)当时,不等式
恒成立,求a的取值范围.
(本小题满分12分)抛物线的焦点为F,过点F的直线交抛物线于A,B两点.
(1)若,求直线AB的斜率;
(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.
(本小题满分12分)如图,在直四棱柱中,底面
为等腰梯形,
,
,
,
,
分别是棱
的中点.
(1)证明:直线平面
;
(2)求二面角的余弦值.
(本小题满分12分)关于x的二次方程在区间
上有解,求实数m的取值范围.