(本小题满分12分)
如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,
∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC平面DMF,并说明理由;
(2)在(1)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.
(本小题满分12分)已知数列{an}的前n项和为Sn, 且满足条件:4S n =+ 4n – 1 , nÎN*.
(1) 证明:(a n– 2)2 –="0" (n ³ 2);(2) 满足条件的数列不惟一,试至少求出数列{an}的的3个不同的通项公式 .
(本小题满分12分)
已知函数的最大值为3,
的图像的相邻两对称轴间的距离为2,在Y轴上的截距为2.
(Ⅰ)求函数的解析式;(Ⅱ)设数列
为其前n项和,求
.
某工程的工序流程图如图(工时单位:天).现已知工程总时数为10天,则工序c所需工时为_____天.
(本小题满分12分)一个多面体的直观图
及三视图如图所示:(其中M、N分别是AF、BC的中点).
(Ⅰ)求证:MN∥平面CDEF;
(II)求多面体A—CDEF的体积.
设函数,
。
(1)若,过两点
和
的中点作
轴的垂线交曲线
于点
,求证:曲线
在点
处的切线
过点
;
(2)若,当
时
恒成立,求实数
的取值范围。