如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.
(1)求证:∠ACM=∠ABC;
(2)延长BC到D,使CD = BC,连接AD与CM交于点E,若⊙O的半径为2,ED =1,求AC的长.
例:说明代数式的几何意义,并求它的最小值.
解:,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则
可以看成点P与点A(0,1)的距离,
可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,
只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,
所以PA′+PB的最小值为线段A′B的长度.为此,构造直角
三角形A′CB,因为A′C=3,CB=3,所以A′B=,
即原式的最小值为。
根据以上阅读材料,解答下列问题:
(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B的距离之和.(填写点B的坐标)
(2)求代数式的最小值
已知一次函数的图象经过点
,且与函数
的图象相交于点
.
(1)求的值;
(2)若函数的图象与
轴的交点是B,函数
的图象与
轴的交点是C,求四边形
的面积(其中O为坐标原点).
(1)如图1,△ABC的顶点坐标分别为A(-1,0),B(3,0),C(0,2).若将点A向右平移4个单位,则A、B两点重合;若将点A向右平移1个单位,再向上平移2个单位,则A、C两点重合.试解答下列问题:
①填空:将点C向下平移个单位,再向右平移个单位与点B重合;
②将点B向右平移1个单位,再向上平移2个单位得点D,请你在图中标出点D的位置,并连接BD、CD,请你说明四边形ABDC是平行四边形;
(2)如图2,△ABC的顶点坐标分别为A(-2,-1),B(2,-3),C(1,1).请问:以△ABC的两条边为边,第三边为对角线的平行四边形有几个?并直接写出第四个顶点的坐标.
已知△ABC中,AB=AC,CD⊥AB于D.
(1)若∠A=40°,求∠DCB的度数;
(2)若AB=10,CD=6,求BD的长.
在菱形ABCD中,∠B=60°,点E、F分别在AB、AD 上.
(1)如图1,若点E、F分别为AB、AD的中点,问点C在线段EF的垂直平分线上吗?请直接回答,不需要说明理由.
答:.
(2)如图2,若点E、F分别在AB、AD上,且BE=AF,问点C在线段EF的垂直平分线上吗?请说明你的理由.