为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元,那么政府为他承担的总差价最少为多少元?
如图,在 的方格纸 中,请按要求画格点线段(端点在格点上),且线段的端点均不与点 , , , 重合.
(1)在图1中画格点线段 , 各一条,使点 , , , 分别落在边 , , , 上,且 , 不平行 .
(2)在图2中画格点线段 , 各一条,使点 , , , 分别落在边 , , , 上,且 .
, 两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.
(1)要评价这两家酒店 月的月盈利的平均水平,你选择什么统计量?求出这个统计量.
(2)已知 , 两家酒店 月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.
如图,在 和 中, , ,点 , , 依次在同一直线上,且 .
(1)求证: .
(2)连结 ,当 , 时,求 的长.
(1)计算: .
(2)化简: .
用各种盛水容器可以制作精致的家用流水景观(如图 .
科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为 (单位: ,如果在离水面竖直距离为 (单位: 的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离) (单位: 与 的关系式为 .
应用思考:现用高度为 的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离 处开一个小孔.
(1)写出 与 的关系式;并求出当 为何值时,射程 有最大值,最大射程是多少?
(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为 , ,要使两孔射出水的射程相同,求 , 之间的关系式;
(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加 ,求垫高的高度及小孔离水面的竖直距离.