2014年2月,纯电动出租车在南京正式上路运行,下表是普通燃油出租车和纯电动出租车的运价.
车型 |
起步公里数 |
起步价格 |
超出起步公里数后的单价 |
普通燃油型 |
3 |
9元+2元(燃油附加费) |
2.4元/公里 |
纯电动型 |
2.5 |
9元 |
2.9元/公里 |
设乘客打车的路程为x公里,乘坐普通燃油出租车及纯电动出租车所需费用分别为y1、y2元.
(1)直接写出y1、y2关于x的函数关系式,并注明对应的x的取值范围;
(2)在如下的同一个平面直角坐标系中,画出y1、y2关于x的函数图象;
(3)结合图象,求出当乘客打车的路程在什么范围内时,乘坐纯电动出租车更合算.
已知二次函数.
(1)求出这个函数图象的对称轴和顶点坐标;
(2)求出这个函数图象与
轴、y轴的交点坐标.
如图,矩形是矩形
绕点B顺时针旋转得到的.其中点
在
轴负半轴上,线段
在
轴正半轴上,
点的坐标为
.
(1)如果二次函数
的图象经过
两点且图象顶点
的纵坐标为
.求这个二次函数的解析式;
(2)求边
所在直线的解析式;
(3)在(1)中求出的二次函数图象上是否存在点P,使得
,若存在,请求出点P的坐标,若不存在,请说明理由.
.已知函数(m是常数).
(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
(2)若一次函数
的图象与该函数的图象恰好只有一个交点,求m的值 及这个交点的坐标.
如图1,在△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕顶点C顺时针旋转30°,得到△A′B′C.联结A′A、B′B,设△ACA′和△BCB′的面积分别为S△ACA′ 和S△BCB′.(1)直接写出S△ACA′ ︰S△BCB′ 的值;
(2)如图2,当旋转角为
(0°<
<180°)时,S△ACA′ 与S△BCB′ 的比值是否发生变化,若不变请证明;若改变,写出变化后的比值(可用含
的代数式表示).
如图,在三角形ABC中,以为直径作⊙O,交AC于点E,OD⊥AC于D,∠AOD=∠C.
(1)求证:BC为⊙O的切线;
(2)若
,求OD的长.