(本题满分12分)
在中,已知角
的对边分别为
,且
成等差数列.
(1)若,求
的值;
(2)求的取值范围.
若函数f(x)=-x3+6x2-9x+m在区间[0,4]上的最小值为2,求它在该区间上的最大值.
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(a-c)
=c
(1)求角B的大小;
(2)若||=
,求△ABC面积的最大值.
已知数列{an}的首项a1=1,且满足.
(1)设,求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(2)设cn=bn·2n,求数列{cn}的前n项和Sn.
已知函数f(x)=cosx•sin(x+)﹣
cos2x+
,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在闭区间[﹣,
]上的最大值和最小值.
数列{an}通项公式,前n项和为Sn,则S2015=