如图,已知矩形ABCD,AB=,BC=3,在BC上取两点E,F(E在F左边),以时为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)在不添加辅助线的情况下,当F与C不重合时,从图中找出一对相似三角形 (不含全等形),并证明;
(3)若△PEF的边EF在线段BC上以每秒1个单位的速度移动.设BE的长为,PH的长为
,请你写出
与
的函数式,并指出函数自变量的取值范围.
(本题5分)解不等式组:
(本题12分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了统计表和统计图:
甲、乙射击成绩统计表
平均数 |
中位数 |
方差 |
命中10环的次数 |
|
甲 |
7 |
0 |
||
乙 |
1 |
(1)请补全上述图表(直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
(本题10分)在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图(1),则根据勾股定理,得a2+b2=c2.若△ABC不是直角三角形,如图(2)和(3),请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.
如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.
(1)写出点P2的坐标;
(2)求直线l所表示的一次函数的表达式;
(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.
(本题10分)如图,四边形ABCD中,∠ABC=90°,CD⊥AD,,
(1)求证:AB=BC;
(2)过点B作BE⊥AD于E,若四边形ABCD的面积为,求BE的长.