用分析法证明:
袋子里有大小相同的3个红球和4个黑球,今从袋子里随机取球.
(Ⅰ)若有放回地摸出4个球,求取出的红球数不小于黑球数的概率;
(Ⅱ)若无放回地摸出4个球,
①求取出的红球数ξ的概率分布列和数学期望;
②求取出的红球数不小于黑球数的概率,并比较
的大小.
设平面上向量,
,
与
不共线,
(Ⅰ)证明向量与
垂直;
(Ⅱ)若两个向量与
的模相等,试求角
.
如图,在四边形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°,且.
(1)求sin∠BAD的值;
(2)设△ABD的面积为S△ABD,△BCD的面积为S△BCD,求的值.
![]() |
在正三棱柱ABC-A1B1C1中,点D在边BC上,AD⊥C1D.
(1)求证:AD⊥平面BC C1 B1;
(2)设E是B1C1上的一点,当的值为多少时,
A1E∥平面ADC1?请给出证明.
已知函数在[1,+∞)上为增函数,且θ∈(0,π),
,m∈R.
(1)求θ的值;
(2)若在[1,+∞)上为单调函数,求m的取值范围;
(3)设,若在[1,e]上至少存在一个
,使得
成立,求
的取值范围.