一个袋中有大小相同的标有1,2,3,4,5,6的6个小球,某人做如下游戏,每次从
袋中拿一个球(拿后放回),记下标号.若拿出球的标号是3的倍数,则得1分,否则得
分.(Ⅰ)求拿4次至少得2分的概率; (Ⅱ)求拿4次所得分数
的分布列和数学期望.
(本小题满分13分)(注意:在试题卷上作答无效)已知椭圆
和圆
:
,过椭圆上一点
引圆
的两条切线,切点分别为
.
(Ⅰ)(ⅰ)若圆
过椭圆的两个焦点,求椭圆的离心率
;
(ⅱ)若椭圆上存在点
,使得
,求椭圆离心率
的取值范围;
(Ⅱ)设直线
与
轴、
轴分别交于点
,
, 求证:
为定值.
(本小题满分12分)(注意:在试题卷上作答无效)为赢得2010年上海世博会的制高点,某公司最近进行了世博特许产品的市场分析,调查显示,该产品每件成本9元,售价为30元,每天能卖出432件,该公司可以根据情况可变化价格
(
)元出售产品;若降低价格,则销售量增加,且每天多卖出的产品件数与商品单价的降低值
的平方成正比,已知商品单价降低2元时,每天多卖出24件;若提高价格,则销售减少,减少的件数与提高价格
成正比,每提价1元则每天少卖8件,且仅在提价销售时每件产品被世博管委会加收1元的管理费。
(Ⅰ)试将每天的销售利润
表示为价格变化值
的函数;
(Ⅱ)试问如何定价才能使产品销售利润最大?
(本小题满分12分)(注意:在试题卷上作答无效)
如图,直角△BCD所在的平面垂直于正△ABC所在的平面,
PA⊥平面ABC,
,
为DB的中点,
(Ⅰ)证明:AE⊥BC;
(Ⅱ)若点
是线段
上的动点,设平面
与平面
所成的平面角大小为
,当
在
内取值时,求直线PF与平面DBC所成的角的范围。
(本小题满分12分)(注意:在试题卷上作答无效)
设定义在R上的函数
,当时,f (x)取得极大值,并且函数
的图象关于y轴对称。
(Ⅰ)求f (x)的表达式;
(Ⅱ)若曲线
对应的解析式为
,求曲线过点
的切线方程。
(本小题满分12分)(注意:在试题卷上作答无效)
在△
中,角
、
、
所对的边分别为
、
、
,且
.
(Ⅰ)若
,求角
;
(Ⅱ)设
,
,试求
的取值范围。