(本小题满分10分)某商店根据以往某种新产品的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)估计日销售量的众数;
(2)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(3)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列.
在△ABC中,a、b、c分别是角A、B、C的对边,且,
(Ⅰ)求角B的大小;
(Ⅱ)若最大边的边长为
,且
,求最小边长
已知,
满足
,
求函数的最小值。
已知为奇函数,
为偶函数,且
.
(1)写出解析式,
=
(2)若,则
的取值范围是
已知半径为的圆的圆心在
轴上,圆心的横坐标是整数,且与直线
相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线与圆相交于
两点,求实数
的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦
的垂直平分线
过点
,若存在,求出实数
的值;若不存在,请说明理由
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积;
(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.