(本小题满分10分)某商店根据以往某种新产品的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)估计日销售量的众数;
(2)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(3)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列.
[选修4-5:不等式选讲]
已知 .
(1)求不等式 的解集;
(2)在直角坐标系 中,求不等式组 所确定的平面区域的面积.
[选修4-4:坐标系与参数方程]
在直角坐标系 中,以坐标原点 为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,曲线 ( 为参数, ).
(1)写出 的直角坐标方程;
(2)若直线 既与 没有公共点,也与 没有公共点、求 的取值范围.
已知椭圆 的离心率为 ,点 在 上.
(1)求 的方程;
(2)过点 的直线交 于点 , 两点,直线 , 与 轴的交点分别为 , ,证明:线段 的中点为定点.
已知函数 .
(1)当 时,求曲线 在点 处的切线方程;
(2)若函数 在 单调递增,求 的取值范围.
如图,在三棱锥 中, , , , , , , 的中点分别为 , , ,点 在 上, .
(1)求证: 平面 ;
(2)若 ,求三棱锥 的体积.