已知函数,其中
.
(Ⅰ)当时,判断
在区间
上的单调性;
(Ⅱ)当时,若不等式
对于
恒成立,求实数
的取值范围.
已知函数
(1)若函数在
上为增函数,求正实数
的取值范围;
(2)讨论函数的单调性;
(3)当时,求证:对大于
的任意正整数
,都有
。
(本小题满分12分)
在平面直角坐标系中,已知,若实数
使得
(
为坐标原点)
(1)求点的轨迹方程,并讨论
点的轨迹类型;
(2)当时,若过点
的直线
与(1)中
点的轨迹交于不同的两点
(
在
之间),试求
与
面积之比的取值范围。
(本小题满分12分)
如图,在直三棱柱中,
,
为
的中点,且
,
(1)当时,求证:
;
(2)若为
中点,当
为何值时,异面直线
与所成的角的正弦值为
。
(本小题满分12分)
在一个盒子中放有标号分别为1、2、3的三张卡片,现从这个盒子中有放回地先后抽取两张卡片,并记它们的标号分别为,设
,
(1)求事件“”发生的概
率;
(2)求的最大值,并求事件“
取得最大值”的概率。
(本小题满分12分)
已知函数。
(1)若方程在
上有解,求
的
取值范围;
(2)在中,
分别是
所对的边,当(1)中的
取最大值且
时,求
的最小值。