(本小题满分13分)如图,四棱锥,侧面
是边长为
的正三角形,且与底面垂直,底面
是
的菱形,
为
的中点.
(Ⅰ)求证:;
(Ⅱ)在棱上是否存在一点
,使得
四点共面?若存在,指出点
的位置并证明;若不存在,请说明理由;
(Ⅲ)求点到平面
的距离.
已知椭圆的右焦点为
,离心率
,
是椭圆上的动点.
(1)求椭圆标准方程;
(2)若直线与
的斜率乘积
,动点
满足
,(其中实数
为常数).问是否存在两个定点
,使得
?若存在,求
的坐标及
的值;若不存在,说明理由.
已知函数.
(1)当时,求
的极值;
(2)若对
恒成立,求实数
的取值范围.
如图,已知长方形中,
,
,
为
的中点.将
沿
折起,使得平面
平面
.
(1)求证:;
(2)若点是线段
的中点,求二面角
的余弦值.
在锐角中,
分别为角
所对的边,且
(1)试求角的大小;
(2)若,且
的面积为
,求
的值.
已知各项均为正数的数列的前
项和为
,且对任意的
,都有
。
(1)求数列的通项公式;
(2)若数列满足
,且cn=anbn,求数列
的前
项和
;
(3)在(2)的条件下,是否存在整数,使得对任意的正整数
,都有
,若存在,求出
的值;若不存在,试说明理由.