某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若超市购进x(x>0)件甲种玩具需要花费y元,求y与x的函数关系式;
(3)超市打算购买x件(x>20)玩具,在(2)的条件下,从甲、乙两种玩具中选购其中一种,问:当x满足什么条件时超市购进甲种玩具比购进乙种玩具更省钱?
利用平方差公式计算:2009×2007﹣20082.
(1)一变:利用平方差公式计算:.
(2)二变:利用平方差公式计算:.
简便计算:
(1)123452﹣12344×12346.
(2)3.76542+0.4692×3.7654+0.23462.
20022﹣20012+20002﹣19992+19982﹣…+22﹣12.
你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;
③(x﹣1)(x3+x2+x+1)=x4﹣1;…
由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)= _________ ;
请你利用上面的结论,完成下面的计算:
299+298+297+…+2+1.
观察下列各式:
(x﹣1)(x+1)=x2﹣1,
(x﹣1)(x2+x+1)=x3﹣1,
(x﹣1)(x3+x2+x+1)=x4﹣1,
(x﹣1)(x4+x3+x2+x+1)=x5﹣1,
(1)根据前面各式的规律可得:(x﹣1)(xn+xn﹣1+…+x2+x+1)= _________ (其中n为正整数).
(2)根据(1)求1+2+22+23+…+262+263的值,并求出它的个位数字.