游客
题文

如图1,已知抛物线与一直线相交于两点,与轴交于点,其顶点为

(1)求抛物线及直线的函数关系式,并直接写出点的坐标;
(2)如图1,若抛物线的对称轴与直线相交于点为直线上的任意一点,过点交抛物线于点,以为顶点的四边形能否为平行四边形?若能,求点的坐标;若不能,请说明理由;
(3)如图2,若点是抛物线上位于直线上方的一个动点,求的面积的最大值.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x-1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.

(1)求点A,B的坐标;
(2)求抛物线C1的表达式及顶点坐标;
(3)若拋物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.

作平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线的一个交点为P(2,m),与x轴、y轴分别交于点A,B.
(1)求m的值;
(2)若PA=2AB,求k的值.

(本小题10分)
已知二次函数( b,c为常数).
(Ⅰ)当b =2,c =-3时,求二次函数的最小值;
(Ⅱ)当c =5时,若在函数值y =1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;
(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.

(本小题满分11分)
如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.

(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标:
(2)设点C的级坐标为yc,求yc的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y1的大小;
(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.

(本小题满分10分)
水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出,设水面高为y毫米.

(1)只放入大球,且个数为x,求y与x的函数关系式(不必写出x的范围);
(2)仅放入6个大球后,开始放入小球,且小球个数为x.
①求y与x的函数关系式(不必写出x的范围);
②限定水面高不超过260毫米,最多放入几个小球?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号