游客
题文

近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售。.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同。求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,直线轴交于,与轴交于,以为边作矩形,点轴上,双曲线经过点与直线交于轴于,则.

如图:在平面直角坐标系中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=3,AD=6,将纸片沿过点M的直线折叠(点M在边AB上),使点B落在边AD上的E处(若折痕MN与x轴相交时,其交点即为N),过点E作EQ⊥BC于Q,交折痕于点P。
①当点分别与AB的中点、A点重合时,那么对应的点P分别是点,则(,)(,);②当∠OMN=60°时,对应的点P是点,求的坐标;
若抛物线,是经过(1)中的点,试求a、b、c的值;
在一般情况下,设P点坐标是(x,y),那么y与x之间函数关系式还会与(2)中函数关系相同吗(不考虑x的取值范围)?请你利用有关几何性质(即不再用三点)求出y与x之间的关系来给予说明.

观察发现
如题27(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P
再如题27(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这
点就是所求的点P,故BP+PE的最小值为

实践运用
如题27(c)图,已知⊙O的直径CD为4,弧AD所对圆心角的度数为60°,点B是弧AD的中点,请你在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

拓展延伸
如题27(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留
作图痕迹,不必写出作法.

如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.
求证:△ABD∽△AEB;
若AD=1,DE=3,求⊙O半径的长.

一量角器所在圆的直径为10厘米,其外缘有A、B两点,其读数、分别为71°和47°.
劣弧AB所对圆心角是多少度?
求劣弧AB的长;
问A、B之间的距离是多少?(可用计算器,精确到0.1)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号