(12分)已知p:
,q:
.
(Ⅰ)若p是q充分不必要条件,求实数的取值范围;
(Ⅱ)若“p”是“
q”的充分不必要条件,求实数
的取值范围.
(本小题满分12分)
某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D.
(I)求AB的长度;
(Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.
(本小题满分12分)已知函数
(I)当的单调区间和极值;
(II)若函数在[1,4]上是减函数,求实数a的取值范围.
已知函数.
(Ⅰ)若函数在区间上有最小值
,求
的值.
(Ⅱ)若同时满足下列条件①函数在区间
上单调;②存在区间
使得
在
上的值域也为
;则称
为区间
上的闭函数,试判断函数
是否为区间
上的闭函数?若是求出实数
的取值范围,不是说明理由.
已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)若,求
的值;
(Ⅲ)判断并证明该函数的单调性.
直线与
轴,
轴分别相交于A、B两点,以AB为边做等边
,若平面内有一点
使得
与
的面积相等,求
的值.