(本小题满分13分)甲、乙、丙三人参加某次招聘会,若甲应聘成功的概率为,乙、丙应聘成功的概率均为
,且三人是否应聘成功是相互独立的.
(Ⅰ)若甲、乙、丙都应聘成功的概率是,求
的值;
(Ⅱ)在(Ⅰ)的条件下,设表示甲、乙两人中被聘用的人数,求
的数学期望.
如果函数满足在集合
上的值域仍是集合
,则把函数
称为N函数.
例如:就是N函数.
(Ⅰ)判断下列函数:①,②
,③
中,哪些是N函数?(只需写出判断结果);
(Ⅱ)判断函数是否为N函数,并证明你的结论;
(Ⅲ)证明:对于任意实数,函数
都不是N函数.
(注:“”表示不超过
的最大整数)
已知椭圆:
的离心率为
,右焦点为
,右顶点
在圆
:
上.
(Ⅰ)求椭圆和圆
的方程;
(Ⅱ)已知过点的直线
与椭圆
交于另一点
,与圆
交于另一点
.请判断是否存在斜率不为0的直线
,使点
恰好为线段
的中点,若存在,求出直线
的方程;若不存在,说明理由.
已知函数,其中
为常数.
(Ⅰ)若函数是区间
上的增函数,求实数
的取值范围;
(Ⅱ)若在
时恒成立,求实数
的取值范围.
如图,在四棱锥中,底面
是菱形,
,且侧面
平面
,点
是棱
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:;
(Ⅲ)若,求证:平面
平面
.
根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示
(Ⅰ)求上图中的值;
(Ⅱ)甲队员进行一次射击,求命中环数大于7环的概率(频率当作概率使用);
(Ⅲ)由上图判断甲、乙两名队员中,哪一名队员的射击成绩更稳定(结论不需证明).