游客
题文

(本小题满分13分)如图,在四棱柱中,底面是矩形,且.若的中点,且

(1)求证:平面
(2)线段上是否存在一点,使得二面角?若存在,求出的长;不存在,说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量基本定理及坐标表示
登录免费查看答案和解析
相关试题

设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.
(1)求数列{an}的公比;
(2)证明:对任意k∈N,Sk+2,Sk,Sk+1成等差数列.

已知等差数列{an}的公差d=1,前n项和为Sn.
(1)若1,a1,a3成等比数列,求a1
(2)若S5>a1a9,求a1的取值范围.

已知数列{an}是首项为1,公差为d的等差数列,数列{bn}是首项为1,公比为q(q>1)的等比数列.
(1)若a5=b5,q=3,求数列{an·bn}的前n项和;
(2)若存在正整数k(k≥2),使得ak=bk.试比较an与bn的大小,并说明理由..

已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)分别求数列{an}、{bn}的通项公式;
(2)设Tn(n∈N*),若Tn<c(c∈Z)恒成立,求c的最小值.

已知各项均为正数的等比数列{an}的公比为q,且0<q<.
(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;
(2)若a1=1,且对任意正整数k,ak-(ak+1+ak+2)仍是该数列中的某一项.
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,试用S2011表示T2011.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号