(本小题共12分)已知焦点在轴的椭圆
的左、右焦点分别为
,直线
过右焦点
,和椭圆交于
两点,且满足
,直线
的斜率为
.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.
(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;
(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.
侧棱PA=PD=,底面ABCD为直角梯形,其中
BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出
的值;若不存在,请说明理由.
数列{an}的前n项和记为Sn,
(1)求{an}的通项公式;
(2)等差数列{bn}的各项为正,其前n项和为Tn,且,又
成等比数列,求Tn
设a为实数,记函数的最大值为g(a).
(1)设t=,求t的取值范围,并把f(x)表示为t的函数m(t);
(2)求g(a);
(3)试求满足的所有实数a.
设函数.
(1)在区间上画出函数
的图像;
(2)设集合. 试判断集合
和
之间的关系,并给出证明;
(3)当时,求证:在区间
上,
的图像位于函数
图像的
上方.
20个下岗职工开了50亩荒地,这些地可以种蔬菜、棉花、水稻,如果种这些农作物每亩地所需的劳力和预计的产值如下:
每亩需劳力 |
每亩预计产值 |
|
蔬菜 |
![]() |
1100元 |
棉花 |
![]() |
750元 |
水稻 |
![]() |
600元 |
问怎样安排,才能使每亩地都种上作物,所有职工都有工作,而且农作物的预计总产值达到最高?