如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.
(1)求证:FD是⊙O的一条切线;
(2)若AB=10, AC=8,求DF的长.
(5分)如图,已知⊙O直径为4cm,点M为弧AB的中点,弦MN、AB交于点P,APM=60°,求弦MN的长.
(5分)
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中
(m)是球的飞行高度,
(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)请求出球飞行的最大水平距离.
(2)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.
(5分)抛物线的顶点坐标为(1,-4),图象又经过点(2,-3).
求(1)抛物线
的解析式.
(2)求抛物线
与一次函数y=3x+11的交点坐标.
(3)求不等式
>3x+11的解集(直接写出答案).
如图,在△中,∠
=90°,sin
=
,
=15,求△
的周长和tanB的值.