(本小题满分12分)“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中恰有2个人接受挑战的概率是多少?
(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
|
接受挑战 |
不接受挑战 |
合计 |
男性 |
50 |
10 |
60 |
女性 |
25 |
15 |
40 |
合计 |
75 |
25 |
100 |
根据表中数据,是否有%的把握认为“冰桶挑战赛与受邀者的性别有关”?
附:
![]() |
0.100 |
0.050 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
6.635 |
10.828 |
如图5,四棱锥中,底面
为矩形,
底面
,
,
分别为
的中点
(1)求证:面
;
(2)若,求
与面
所成角的余弦值
若向量,且
(1)求;
(2)求函数的值域
在各项均为正数的数列中,前
项和
满足
。
(1)证明是等差数列,并求这个数列的通项公式及前
项和的公式;
(2)在平面直角坐标系面上,设点
满足
,且点
在直线
上,
中最高点为
,若称直线
与
轴、直线
所围成的图形的面积为直线
在区间
上的面积,试求直线
在区间
上的面积;
(3)求出圆心在直线上的圆,使得点列
中任何一个点都在该圆内部
在以为原点的直角坐标系中,点
为
的直角顶点,若
,且点
的纵坐标大于0
(1)求向量的坐标;
(2)是否存在实数,使得抛物线
上总有关于直线
对称的两个点?若存在,求实数
的取值范围,若不存在,说明理由;
若函数在点
处的切线方程为
(1)求的值;
(2)求的单调递增区间;
(3)若对于任意的,恒有
成立,求实数
的取值范围