游客
题文

某厂用鲜牛奶在某台设备上生产 A , B 两种奶制品.生产1吨 A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨 B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天 B 产品的产量不超过 A 产品产量的2倍,设备每天生产 A , B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量 W (单位:吨)是一个随机变量,其分布列为

该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利 Z (单位:元)是一个随机变量.

image.png

(Ⅰ)求 Z 的分布列和均值;
(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

科目 数学   题型 解答题   难度 困难
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

选修4-5:不等式证明选讲已知函数
(Ⅰ)试求的值域;(Ⅱ)设,若对,恒成立,试求实数的取值范围

选修4-1:几何证明选讲如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB、FC.
(Ⅰ)求证:FB=FC;
(Ⅱ)求证:FB2=FA·FD;

(本小题满分12分)已知函数,
(Ⅰ)试用含的式子表示b,并求函数的单调区间;
(Ⅱ)已知为函数图象上不同两点,的中点,记AB两点连线斜率为K,证明:

已知椭圆的离心率,短轴长为.
(Ⅰ)求椭圆方程;(Ⅱ)若椭圆与轴正半轴、轴正半轴的交点分别为,经过点且斜率为的直线与椭圆交于不同的两点.是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由.

(本小题满分12分)如图,四边形ABCD是边长为1的正方形, ,且MD=NB=1,E为BC的中点 (1)求异面直线NE与AM所成角的余弦值
(2)在线段AN上找点S,使得ES平面AMN,并求线段AS的长;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号