已知二阶矩阵M有特征值及对应的一个特征向量
,并且矩阵M对应的变换将点
变换成
。
(1)求矩阵M;
(2)求矩阵M的另一个特征值,及对应的一个特征向量e2的坐标之间的关系。
(3)求直线在矩阵M的作用下的直线
的方程.
已知在
时有极大值6,在
时有极小值,求a,b,c的值;并求
区间
上的最大值和最小值.
如图,在正方体中,
是
的中点.
(1)求证:平面
;
(2)求证:平面平面
.
已知命题,命题
,若
是
的必要不充分条件,求实数m的取值范围。
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于
轴(垂足为T),与抛物线交于不同的两点P、Q,且
.
(Ⅰ)求点T的横坐标;
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设,若
的取值范围.
已知函数.
(Ⅰ)若a>0,函数y=f(x)在区间(a,a 2-3)上存在极值,求a的取值范围;
(Ⅱ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.