已知二阶矩阵M有特征值及对应的一个特征向量
,并且矩阵M对应的变换将点
变换成
。
(1)求矩阵M;
(2)求矩阵M的另一个特征值,及对应的一个特征向量e2的坐标之间的关系。
(3)求直线在矩阵M的作用下的直线
的方程.
如图的多面体是底面为平行四边形的直四棱柱ABCD—,经平面AEFG
所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60
(I)求证:BD⊥平面ADG;(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.
已知=(cosx+sinx,sinx),=(cosx-sinx,2cosx),
(Ⅰ)求证:向量与向量不可能平行;(Ⅱ)若f(x)=·,且x∈[-,]时,求函数f(x)的最大值及最小值
设函数.
(1)若,求函数
的极值;
(2)若是函数
的一个极值点,试求出
关于
的关系式(即用
表示
),并确定
的单调区间;(提示:应注意对a的取值范围进行讨论)
(3)在(2)的条件下,设,函数
.若存在
使得
成立,求
的取值范围.
(本小题12分)已知椭圆的左右焦点分别为
,短轴两个端点为
,且四边形
是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
。证明:
为定值;
(3)在(2)的条件下,试问轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,请说明理由。
第21题图
某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段
,
…
后得到如下部分频率分布直方图.(见下一页图)观察图形的信息,回答下列问题:
(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅲ)用分层抽样的方法在分数段为的学生中抽取一个容量为
的样本,将该样本看成一个总体,从中任取
人,求至多有
人在分数段
的概率。