一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽滑动,且,.当栓子在滑槽内作往复运动时,带动绕转动一周(不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.
(Ⅰ)求曲线的方程;
(Ⅱ)设动直线与两定直线和分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
已知函数,
.求:
(I)求函数的最小正周期和单调递增区间;
(II)求函数在区间
上的值域.
已知,
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)若在
处有极值,求
的单调递增区间;
(Ⅲ)是否存在实数,使
在区间
的最小值是3,若存在,求出
的值;若不存在,说明理由.
在中,角
所对的边分别为
,且
,
(1)求,
的值;
(2)若,求
的值.
已知函数
(Ⅰ)求的最小正周期和单调递增区间;
(Ⅱ)求函数在
上的值域.
已知圆的圆心
与点
关于直线
对称,圆
与直线
相切.
(1)设为圆
上的一个动点,若点
,
,求
的最小值;
(2)过点作两条相异直线分别与圆
相交于
,且直线
和直线
的倾斜角互补,
为坐标原点,试判断直线
和
是否平行?请说明理由.