如图,椭圆 E : x 2 a 2 + y 2 b 2 = 1 a > b > 0 经过点 A 0 , - 1 ,且离心率为 2 2 .
(Ⅰ)求椭圆 E 的方程; (Ⅱ)经过点 ,且斜率为 k 的直线与椭圆 E 交于不同两点 P , Q (均异于点 A ),证明:直线 A P 与 A Q 的斜率之和为2.
已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R. (Ⅰ)求A∪B,(C A)∩B; (Ⅱ)若A∩C≠,求a的取值范围.
已知函数. (Ⅰ)求的最小正周期及的对称中心; (Ⅱ)求在区间上的最大值和最小值.
已知,且. (Ⅰ)求的值; (Ⅱ)求的值.
设为奇函数,为常数. (Ⅰ)求的值; (Ⅱ)判断在区间(1,+∞)的单调性,并说明理由; (Ⅲ)若对于区间[3,4]上的每一个值,不等式>恒成立,求实数的取值范围.
已知函数. (1)求函数的最小正周期和图像的对称轴方程; (2)求函数在区间上的值域.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号