设为奇函数,为常数. (Ⅰ)求的值; (Ⅱ)判断在区间(1,+∞)的单调性,并说明理由; (Ⅲ)若对于区间[3,4]上的每一个值,不等式>恒成立,求实数的取值范围.
已知函数,其中. (1)若对一切恒成立,求的取值范围; (2)在函数的图像上取定两点,记直线的斜率为,证明:存在,使成立.
已知函数的图象经过点M(1,4),曲线在点M处的切线恰好与直线垂直。 (1)求实数的值; (2)若函数在区间上单调递增,求的取值范围.
函数的最大值为3,其图像相邻两条对称轴之间的距离为 (1)求函数的解析式 (2)设,则,求的值
是等差数列,公差,是的前项和,已知. (1)求数列的通项公式; (2)令=,求数列的前项之和.
在中, (1)求的值; (2)求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号