如图, O , P , Q 三地有直道相通, O P = 5 千米, P Q = 3 千米, O Q = 4 千米.现甲、乙两警员同时从 O 地出发匀速前往 Q 地,经过 t 小时,他们之间的距离为 f t (单位:千米).甲的路线是 O Q ,速度为5千米/小时,乙的路线是 OP Q ,速度为8千米/小时.乙到达 B 地后原地等待.设 t = t 1 时乙到达 Q 地.
(1)求 t 1 与 f t 1 的值; (2)已知警员的对讲机的有效通话距离是3千米.当 t 1 ≤ t ≤ 1 时,求 f t 的表达式,并判断 f t 在 t 1 , 1 上得最大值是否超过3?说明理由.
已知函数在处取得的极小值是. (1)求的单调递增区间; (2)若时,有恒成立,求实数的取值范围.
如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD (1)求证:BF∥平面ACE; (2)求二面角B-AF-C的大小; (3)求点F到平面ACE的距离.
设角是的三个内角,已知向量,,且. (Ⅰ)求角的大小; (Ⅱ)若向量,试求的取值范围.
(本小题满分12分)已知数列满足递推式: (1)若的通项公式; (2)求证:
(本小题满分12分) 已知函数 (I)讨论函数的单调性; (II)设.如果对任意,, 求的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号