已知椭圆 x 2 + 2 y 2 = 1 ,过原点的两条直线 l 1 和 l 2 分别于椭圆交于 A , B 和 C , D ,记得到的平行四边形 A B C D 的面积为 S . (1)设 A ( x 1 , y 1 ) , C ( x 2 , y 2 ) ,用 A , C 的坐标表示点 C 到直线 l 1 的距离,并证明 S = 2 x 1 y 1 - x 2 y 2 ; (2)设 l 1 与 l 2 的斜率之积为 - 1 2 ,求面积 S 的值.
已知命题,和命题,且为真,为假,求实数的取值范围.
(满分12分)已知函数,,其中a,b为非零实常数。 (1)如何由的图像得到函数的图像? (2)若,,求的值。 (3)若,讨论的奇偶性(只写结论,不用证明)。
(满分12分)已知向量.函数。 (1)求的对称轴。 (2)当时,求的最大值及对应的值。
(满分10分)已知夹角是120°. (1)求的值, (2)当k为何值时,
(满分8分)已知 (Ⅰ)求的值; (Ⅱ)求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号