设函数 f x = 3 x 2 + a x e x a ∈ R
(1)若 f x 在 x = 0 处取得极值,确定 a 的值,并求此时曲线 y = f x 在点 1 , f 1 处的切线方程; (2)若 f x 在 [ 3 , + ∞ ) 上为减函数,求 a 的取值范围。
在中,角所对的边为已知. (1)求值;(2)若面积为,且,求值.
已知函数 (1)当的取值范围; (2)是否存在这样的实数,使得函数在区间上为减函数,且最大值为1,若存在,求出值;若不存在,说明理由。
设命题:实数满足,其中;命题:实数满足且的必要不充分条件,求实数的取值范围.
(本小题满分12分)在数列中,; (1)设,求证数列是等比数列; (2)设,求证:数列是等差数列; (3)求数列的通项公式及前n项和的公式。
(本小题满分12分)已知:方程表示焦点在轴上的双曲线,:方程=(一)表示开口向右的抛物线.若“”为真命题,“”为假命题,求实数的范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号