如图,在直三棱柱
中,已知
,设
的中点为
,
.
求证:
(1) 平面
(2) .
如图.在直棱柱
中,
,
,
,
是
的中点,点E在菱
上运动
(1)证明:
;
(2)当异面直线
,
所成的角为
时,求三棱锥
的体积
已知函数
(1)求
的值;
(2)求使
成立的
的取值集合
设函数
.
(1) 当
时,求函数
的单调区间;
(2) 当
时,求函数
在
上的最小值
和最大值
.
已知抛物线
的顶点为原点,其焦点
到直线
的距离为
.设
为直线
上的点,过点
作抛物线
的两条切线
,其中
为切点.
(1) 求抛物线
的方程;
(2) 当点
为直线
上的定点时,求直线
的方程;
(3) 当点
在直线
上移动时,求
的最小值.
设各项均为正数的数列
的前
项和为
,满足
,且
构成等比数列.
(1) 证明:
;
(2) 求数列
的通项公式;
(3) 证明:对一切正整数
,有
.