(本题小满分12分)
如图,平面四边形中,角
,且
.
(Ⅰ)求∠;
(Ⅱ)求四边形的面积
.
(本小题满分12分)
如图2,渔船甲位于岛屿的南偏西
方向的
处,且与岛屿
相距12海里,渔船乙以10海里/小时的速度从岛屿
出发沿正北方向航行,若渔船甲同时从
处出发沿北偏东
的方向追赶渔船乙,刚好用2小时追上.
(1)求渔船甲的速度;
(2)求的值.
如图,角终边上一点P的坐标(3,4),将OP绕原点旋转
到
的位置,试求点
的坐标.
求函数的定义域
设函数R),函数
的导数记为
.
(1)若,求a、b、c的值;
(2)在(1)的条件下,记,求证:F(1)+ F(2)+ F(3)+…+ F(n)<
N*);
(3)设关于x的方程=0的两个实数根为α、β,且1<α<β<2.试问:是否存在正整数n0,使得
?说明理由.
已知动点到定点
的距离与到定直线
:
的距离相等,点C在直线
上。
(1)求动点的轨迹方程。
(2)设过定点,且法向量
的直线与(1)中的轨迹相交于
两点且点
在
轴的上方。判断
能否为钝角并说明理由。进一步研究
为钝角时点
纵坐标的取值范围。