(本小题满分7分)选修4—2:矩阵与变换在平面直角坐标系中,矩阵对应的变换将平面上的任意一点变换为点.(Ⅰ)求矩阵的逆矩阵;(Ⅱ)求圆在矩阵对应的变换作用后得到的曲线的方程.
在曲线C1:(θ为参数,0≤θ<2π)上求一点,使它到直线C2:(t为参数)的距离最小,并求出该点坐标和最小距离.
过点M(2,1)作曲线C:(θ为参数)的弦,使M为弦的中点,求此弦所在直线的方程.
已知直线l的参数方程:(t为参数)和圆C的极坐标方程:ρ=2sin(θ+),判断直线和圆C的位置关系.
已知两曲线参数方程分别为(0≤θ<π)和(t∈R),求它们的交点坐标.
设直线l1的参数方程为(t为参数),直线l2的方程为y=3x+4,求l1与l2间的距离.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号