已知定义在R上的函数是奇函数
(1)求的值;
(2)判断的单调性,并用单调性定义证明;
(3)若对任意的,不等式
恒成立,求实数
的取值范围。
(本小题满分14分)如图,椭圆:
的左焦点为
,右焦点为
,离心率
.过
的直线交椭圆于
两点,且△
的周长为
.
(Ⅰ)求椭圆的方程.
(Ⅱ)设动直线:
与椭圆
有且只有一个公共点
,且与直线
相交于点
.试探究:在坐标平面内是否存在定点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,说明理由.
(本小题13分)如图,棱锥的底面
是矩形,
⊥平面
,
,
(1)求证:⊥平面
;
(2)求二面角的大小;
(3)求点到平面
的距离.
某商场举行抽奖活动,从装有编号0,1,2,3四个球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖。
(1)求中二等奖的概率;
(2)求未中奖的概率。
已知双曲线的右焦点与抛物线
的焦点重合,求该双曲线的焦点到其渐近线的距离.
已知动圆与直线
相切,且与定圆
外切,求动圆圆心
的轨迹方程.