游客
题文

已知中心在原点,焦点在坐标轴上的椭圆的方程为它的离心率为,一个焦点是,过直线上一点引椭圆的两条切线,切点分别是A、B.
(Ⅰ)求椭圆的方程;
(Ⅱ)若在椭圆上的点处的切线方程是.求证:直线AB恒过定点,并求出定点的坐标;
(Ⅲ)记点C为(Ⅱ)中直线AB恒过的定点,问否存在实数,使得 成立,若成立求出的值,若不存在,请说明理由

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

如图,四棱柱ABCDA1B1C1D1中,侧棱A1A⊥底面ABCDABDCABADADCD=1,AA1AB=2,E为棱AA1的中点.

(1)证明B1C1CE
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD.

(1)求证:PCBD
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥E-BCD的体积取到最大值.
①求此时四棱锥E-ABCD的高;
②求二面角A-DE-B的正弦值的大小.

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.

(1)求证:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.

如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2ADADA1B1,∠BAD=60°.

(1)证明:AA1BD
(2)证明:CC1∥平面A1BD.

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线ACBD的交点,MPD的中点,AB=2,∠BAD=60°.

(1)求证:OM∥平面PAB
(2)求证:平面PBD⊥平面PAC
(3)当四棱锥P-ABCD的体积等于时,求PB的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号