如图所示,已知一次函数y=2x+a与y=-x+b的图象都经过点A(-2,0),且与y轴分别交于B,C两点,求△ABC的面积.
北京冬奥会吉祥物“冰墩墩”深受大家的喜爱,人们争相购买.现有甲、乙两种型号的“冰墩墩”,已知一个甲种型号比一个乙种型号多 元,购买甲、乙两种型号各 个共需 元.
(1)求甲、乙两种型号的“冰墩墩”单价各是多少元?
(2)某团队计划用不超过 元购买甲、乙两种型号的“冰墩墩”共 个,求最多可购买多少个甲种型号的“冰墩墩”?
某学校为满足学生多样化学习需求,准备组建美术、劳动、科普、阅读四类社团.学校为了解学生的参与度,随机抽取了部分学生进行调查,将调查结果绘制成如图所示的不完整的统计图.请根据图中的信息,解答下列问题:
(1)求本次调查的学生人数,并补全条形统计图;
(2)若全校共有学生 人,求愿意参加劳动类社团的学生人数;
(3)甲、乙两名同学决定在阅读、美术、劳动社团中选择参加一种社团,请用树状图或列表法表示出所有等可能结果,并求出恰好选中同一社团的概率.
先化简,再求值. ,其中 .
如图,平行四边形ABCD中, , 动点E、F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.
(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为 秒时,设CE与DF交于点P,求线段EP与CP长度的比值;
(2)如图2,设点E的速度为1个单位每秒,点F的速度为 个单位每秒,运动时间为x秒,△AEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?
(3)如图3,H在线段AB上且 ,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使 ,并说明理由.
如图,抛物线 交x轴于 ,B两点,交y轴于点 ,顶点D的横坐标为 .
(1)求抛物线的解析式;
(2)在y轴的负半轴上是否存在点P使 ,若存在,求出点P的坐标,若不存在,请说明理由;
(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作 ,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.