某玉米种子的价格为a元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象.以下是该科技人员绘制的图象和表格的不完整资料,已知点A的坐标为(2,10).请你结合表格和图象:
付款金额(元) |
a |
7.5 |
10 |
12 |
b |
购买量(千克) |
1 |
1.5 |
2 |
2.5 |
3 |
(1)指出付款金额和购买量哪个变量是函数的自变量x,并写出表中a、b的值;
(2)求出当x>2时,y关于x的函数解析式;
(3)甲农户将8.8元钱全部用于购买该玉米种子,乙农户购买了4165克该玉米种子,分别计算他们的购买量和付款金额.
一般情况下,中学生完成数学家庭作业时,注意力指数随时间 x(分钟)的变化规律如图所示(其中 AB、 BC为线段, CD为双曲线的一部分).
(1)分别求出线段 AB和双曲线 CD的函数关系式;
(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?
鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市"24℃夏天的独特魅力",市旅游局工作人员依据2016年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;
根据以上信息解答下列问题:
(1)2016年7月份,鄂尔多斯市共接待游客 万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是 ,并补全条形统计图;
(2)预计2017年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;
(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作 a、 b、 c,请用树状图或列表法求他们选择去同一个景点的概率.
如图,二次函数 y= ax 2+ bx+ c( a≠0)的图象交 x轴于 A、 B两点,交 y轴于点 D,点 B的坐标为(3,0),顶点 C的坐标为(1,4).
(1)求二次函数的解析式和直线 BD的解析式;
(2)点 P是直线 BD上的一个动点,过点 P作 x轴的垂线,交抛物线于点 M,当点 P在第一象限时,求线段 PM长度的最大值;
(3)在抛物线上是否存在异于 B、 D的点 Q,使△ BDQ中 BD边上的高为2 ?若存在求出点 Q的坐标;若不存在请说明理由.
△ OPA和△ OQB分别是以 OP、 OQ为直角边的等腰直角三角形,点 C、 D、 E分别是 OA、 OB、 AB的中点.
(1)当∠ AOB=90°时如图1,连接 PE、 QE,直接写出 EP与 EQ的大小关系;
(2)将△ OQB绕点 O逆时针方向旋转,当∠ AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.
(3)仍将△ OQB绕点 O旋转,当∠ AOB为钝角时,延长 PC、 QD交于点 G,使△ ABG为等边三角形如图3,求∠ AOB的度数.
如图1,在△ ABC中,设∠ A、∠ B、∠ C的对边分别为 a, b, c,过点 A作 AD⊥ BC,垂足为 D,会有sin∠ C= ,则
S △ ABC= BC× AD= × BC× ACsin∠ C= absin∠ C,
即 S △ ABC= absin∠ C
同理 S △ ABC= bcsin∠ A
S △ ABC= acsin∠ B
通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:
如图2,在△ ABC中,若∠ A、∠ B、∠ C的对边分别为 a, b, c,则
a 2= b 2+ c 2﹣2 bccos∠ A
b 2= a 2+ c 2﹣2 accos∠ B
c 2= a 2+ b 2﹣2 abcos∠ C
用上面的三角形面积公式和余弦定理解决问题:
(1)如图3,在△ DEF中,∠ F=60°,∠ D、∠ E的对边分别是3和8.求 S △ DEF和 DE 2.
解: S △ DEF= EF× DFsin∠ F= ;
DE 2= EF 2+ DF 2﹣2 EF× DFcos∠ F= .
(2)如图4,在△ ABC中,已知 AC> BC,∠ C=60°,△ ABC'、△ BCA'、△ ACB'分别是以 AB、 BC、 AC为边长的等边三角形,设△ ABC、△ ABC'、△ BCA'、△ ACB'的面积分别为 S 1、 S 2、 S 3、 S 4,求证: S 1+ S 2= S 3+ S 4.