已知在中,角A、B、C的对边为
且
,
;
(Ⅰ)若, 求边长
的值。
(Ⅱ)若,求
的面积。
已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线
过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且
,m、n是实数,对于直线
,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.
在四棱锥P-ABCD中,侧面PCD底面ABCD,PD
CD,底面ABCD是直角梯形,AB∥DC,
,
,
.
(1)求证:BC平面PBD:
(2)求直线AP与平面PDB所成角的正弦值;
(3)设E为侧棱PC上异于端点的一点,,试确定
的值,使得二面角E-BD-P的余弦值为
.
某电视台组织部分记者,用“10分制”随机调查某社区居民的幸福指数.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福指数的得分(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福指数不低于9.5分,则称该人的幸福指数为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求
的分布列及数学期望.
已知向量,函数
.
(1)求函数的最小正周期及单调递增区间;
(2)已知中,角
的对边分别为
,若
,
,
求的面积.
已知是公差不等于0的等差数列,
是等比数列
,且
.
(1)若,比较
与
的大小关系;
(2)若.(ⅰ)判断
是否为数列
中的某一项,并请说明理由;
(ⅱ)若是数列
中的某一项,写出正整数
的集合(不必说明理由).