如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1,
,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以
(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.
请解答下列问题:
(1)过A,B两点的直线解析式是 ;
(2)当t﹦4时,点P的坐标为 ;当t ﹦ ,点P与点E重合;
(3)① 作点P关于直线EF的对称点P′.在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?② 当t﹦2时,是否存在着点Q,使得△FEQ ∽△BEP ?若存在, 求出点Q的坐标;若不存在,请说明理由.
为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:
根据统计图所提供的信息,解答下列问题:
(1)本次抽样调查中的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
如图1,在菱形 中, , ,点 从点 出发,以每秒1个单位长度的速度沿着射线 的方向匀速运动,设运动时间为 (秒 ,将线段 绕点 顺时针旋转一个角 ,得到对应线段 .
(1)求证: ;
(2)当 秒时, 的长度有最小值,最小值等于 ;
(3)如图2,连接 、 、 交 、 于点 、 ,当 为何值时, 是直角三角形?
(4)如图3,将线段 绕点 顺时针旋转一个角 ,得到对应线段 .在点 的运动过程中,当它的对应点 位于直线 上方时,直接写出点 到直线 的距离 关于时间 的函数表达式.
如果三角形三边的长 、 、 满足 ,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7, 的三角形都是“匀称三角形”.
(1)如图1,已知两条线段的长分别为 、 .用直尺和圆规作一个最短边、最长边的长分别为 、 的“匀称三角形”(不写作法,保留作图痕迹);
(2)如图2, 中, ,以 为直径的 交 于点 ,过点 作 的切线交 延长线于点 ,交 于点 ,若 ,判断 是否为“匀称三角形”?请说明理由.
如图1,一次函数 的图象与 轴交于点 ,与反比例函数 的图象交于点 .
(1) ; ;
(2)点 是线段 上的动点(与点 、 不重合),过点 且平行于 轴的直线 交这个反比例函数的图象于点 ,求 面积的最大值;
(3)将(2)中面积取得最大值的 沿射线 方向平移一定的距离,得到△ ,若点 的对应点 落在该反比例函数图象上(如图 ,则点 的坐标是 .
现如今,通过微信朋友圈发布自己每天行走的步数,已成为一种时尚,“健身达人”小张为了了解他的微信朋友圈里大家的运动情况,随机抽取了部分好友进行调查,把他们6月9日那天每天行走的步数情况分为五个类别: 步)(说明:“ ”表示大于等于0,小于等于4000,下同), 步), 步), 步), 步及以上),并将统计结果绘制了如图1的图2两幅不完整的统计图.
请你根据图中提供的信息解答下列问题:
(1)将图1的条形统计图补充完整;
(2)已知小张的微信朋友圈里共500人,请根据本次抽查的结果,估计在他的微信朋友圈里6月9日那天行走不超过8000步的人数.