如图,已知抛物线y=ax2+bx+c(经过原点)与x轴相交于N点,直线y=kx+4与坐标轴分别相交于A、D两点,与抛物线相交于B(1,m)和C(2,2)两点.
(1)求直线与抛物线的表达式;
(2)求证:C点是△AOD的外心;
(3)若(1)中的抛物线,在x轴上方的部分,有一动点P(x,y),设∠PON=α.当sinα为何值时,△PON的面积有最大值?
(4)若P点保持(3)中运动路线,是否存在△PON,使得其面积等于△OCN面积的?若存在,求出动点P的位置;若不存在,请说出理由.
解方程:3(x+2)2=x+2
如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,
)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;
(3)求∆PAC为直角三角形时点P的坐标.
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)当销售单价为70元时,每天的销售利润是多少?
(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量的取值范围;
(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)
如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式
(2)设该二次函数的对称轴与轴交于点C,连接BA、BC,求∆ABC的面积.
某小区计划在一个长 40 米,宽 26 米的矩形场地ABCD 上修建三条同样宽的小路,使其中两条与AB平行,另一条与 AD平行,其余部分种草,如图若使每一块草坪的面积都为144 平方米,求小路的宽度.