如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=
图象经过点A.
(1)求k的值;
(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?
如图,平行四边形ABCD中,,点
的坐标是
,以点
为顶点的抛物线
经过
轴上的点
.
(1)求点的坐标;
(2)若抛物线向上平移后恰好经过点,求平移后抛物线的解析式.
已知:如图,AB是⊙O的直径,点C.D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.
(1)试说明:DE=BF;
(2)若∠DAB=60°,AB=6,求△ACD的面积.
如图,抛物线的对称轴是直线,它与
轴交于
,
两点,与
轴交于
点,点
,
的坐标分别是
,
.
(1) 求此抛物线对应的函数解析式;
(2) 若点是抛物线上位于
轴上方的一个动点,求△ABP面积的最大值.
如图,△ABC内接于半圆,AB为直径,设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.
求证:FD=FG.
如图1,抛物线y= -x2+
x+3与x轴交于A.C两点,与y轴交于B点,与直线y=kx+b交于A.D两点.
(1)直接写出A、C两点坐标和直线AD的解析式;
(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1.1.3.4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?