游客
题文

如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.
解决问题
(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;
(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;
(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出的值(用含α的式子表示出来)

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质 对称式和轮换对称式
登录免费查看答案和解析
相关试题

如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:△AEF≌△BCD.

已知,如图△ABC中,AD是BC边上的高,AE是BC上的中线,,,求AD和EC的长.

如图,,AD交BC于点E。有什么关系?为什么?

如图:在平面直角坐标系中A(2,6),B(-1,1),C(4,3).在下图中作出 △ABC关于y轴对称图形△A1B1C1.

如图,△ABC中,AB=AC,AE是外角∠CAD的平分线,求证:AE∥BC

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号