2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:
(1)求该班共有多少名学生;
(2)在条形统计图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?
一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、 、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点 的纵坐标.
(1)用画树状图或列表等方法列出所有可能出现的结果;
(2)求点 落在第四象限的概率.
某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.
请解答下列问题:
(1)在这次调查中,该学校一共抽样调查了 名学生;
(2)补全条形统计图;
(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.
已知:如图, 的对角线 、 相交于点 ,过点 的直线分别与 、 相交于点 、 .求证: .
如图,二次函数 的图象与 轴交于点 、 ,与 轴交于点 ,点 的坐标为 , 是抛物线上一点(点 与点 、 、 不重合).
(1) ,点 的坐标是 ;
(2)设直线 与直线 相交于点 ,是否存在这样的点 ,使得 ?若存在,求出点 的横坐标;若不存在,请说明理由;
(3)连接 、 ,判断 和 的数量关系,并说明理由.
(1)如图1,已知 垂直平分 ,垂足为 , 与 相交于点 ,连接 .求证: .
(2)如图2,在 中, , 为 的中点.
①用直尺和圆规在 边上求作点 ,使得 (保留作图痕迹,不要求写作法);
②在①的条件下,如果 ,那么 是 的中点吗?为什么?