如图,在平行四边形ABCD中,AB=5,BC=12,对角线交于点O,∠BAD的平分线交BC于E、交BD于F,分别过顶点B、D作AE的垂线,垂足为G、H,连接OG、OH.
(1)补全图形;
(2)求证:OG=OH;
(3)若OG⊥OH,直接写出∠OAF的正切值.
如图,在平面直角坐标系中,已知抛物线 与直线 相交于 , 两点,其中 , .
(1)求该抛物线的函数表达式;
(2)点 为直线 下方抛物线上的任意一点,连接 , ,求 面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线 ,平移后的抛物线与原抛物线相交于点 ,点 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 ,使以点 , , , 为顶点的四边形为菱形,若存在,请直接写出点 的坐标;若不存在,请说明理由.
“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对 , 两个小麦品种进行种植对比实验研究.去年 , 两个品种各种植了10亩.收获后 , 两个品种的售价均为2.4元 ,且 的平均亩产量比 的平均亩产量高 , , 两个品种全部售出后总收入为21600元.
(1)请求出 , 两个品种去年平均亩产量分别是多少?
(2)今年,科技小组加大了小麦种植的科研力度,在 , 种植亩数不变的情况下,预计 , 两个品种平均亩产量将在去年的基础上分别增加 和 .由于 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨 ,而 品种的售价不变. , 两个品种全部售出后总收入将在去年的基础上增加 .求 的值.
在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数 “差一数”.
定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.
例如: , ,所以14是“差一数”;
,但 ,所以19不是“差一数”.
(1)判断49和74是否为“差一数”?请说明理由;
(2)求大于300且小于400的所有“差一数”.
在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数 性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在图中补全该函数图象;
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
|
|
|
|
|
0 |
3 |
|
|
|
|
|
(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“ ”,错误的在答题卡上相应的括号内打“ ”;
①该函数图象是轴对称图形,它的对称轴为 轴.
②该函数在自变量的取值范围内,有最大值和最小值.当 时,函数取得最大值3;当 时,函数取得最小值 .
③当 或 时, 随 的增大而减小;当 时, 随 的增大而增大.
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集(保留1位小数,误差不超过 .
如图,在平行四边形 中,对角线 , 相交于点 ,分别过点 , 作 , ,垂足分别为 , . 平分 .
(1)若 ,求 的度数;
(2)求证: .