如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.当△ABC满足什么条件时,四边形ADCF是菱形?为什么?
很多代数原理都可以用几何模型解释.现有若干张如图所示的卡片,请拼成一个边长为(2a+b)的正方形(要求画出简单的示意图),并指出每种卡片分别用了多少张?然后用相应的公式进行验证.
“石头、剪刀、布”是民间广为流传的游戏.现在,很多小朋友在玩这个游戏时对此进行了“升级”:喊着“左一刀,右一刀”的口号同时,左右手接连伸出手势,喊“关键时候收一刀”时收回其中一手.假如甲的左右手势分别是“石头”和“剪刀”,乙的左右手势分别是“剪刀”和“布”,双方任意收回一种手势.
(1)可能会出现哪些等可能的结果?
(2)乙赢的概率是多少?
认真观察下图的四个图中阴影部分构成的图案,回答下列问题:
(1)利用所学知识,请写出这四个图案都具有的特征:
特征1:______________________________________;
特征2:______________________________________;
(2)请在备用图中设计你心目中最美丽的图案,使它也具备你所写的上述
特征.
如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?(请把思考过程补充完整)
理由:
因为:AB∥CD(已知),
所以:∠2=∠3().
因为:∠1=∠2,∠3=∠4(已知).
所以:∠1=∠2=∠3=∠4(等量代换).
所以:180°-∠1-∠2=180°-∠3-∠4(平角定义).
即:___________(等量代换).
所以:__________().
锐角中,
,
,两动点
分别在边
上滑动,且
,以
为边向下作正方形
,设其边长为
,正方形
与
公共部分的面积为
.
(1)中边
上高
;
(2)当时,
恰好落在边
上(如图1);
(3)当在
外部时(如图2),求
关于
的函数关系式(注明
的取值范围),并求出
为何值时
最大,最大值是多少?