(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4的四张卡片,现从甲、乙两个盒子中各取出1张卡片,每张卡片被取出的可能性相等;
(Ⅰ)求取出的两张卡片标号之积能被3整除的概率;
(Ⅱ)如果小王、小李取出的两张卡片的标号相加,谁的两张卡片标号之和大则谁胜出,若小王先抽,抽出卡片的标号分别为3和4,且小王抽出的两张卡片不再放回盒中,小李再抽;求小王胜出的概率。
在△中,角
,
,
的对边分别为
,
,
分,且满足
.
(Ⅰ)求角的大小;
(Ⅱ)若,求△
面积的最大值
(本小题15分)
如图在三棱锥P-ABC中,PA分别在棱
,
(1)求证:BC
(2)当D为PB中点时,求AD与平面PAC所成的角的余弦值;
(3)是否存在点E,使得二面角A-DE-P为直二面角,并说明理由。
(本小题15分)
已知函数有极值.
(1)求的取值范围;
(2)若在
处取得极值,且当
时,
恒成立,求
的取值范围.
(本小题14分)
如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,
平面VAD
(1)证明:AB;
(2)求面VAD与面VDB所成的二面角的余弦值。
(本小题14分)
已知函数的图像过点
,且在点
处的切线方程为
,
(1)求函数的解析式;
(2)求函数的单调区间。