在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),,圆C的参数方程为 (θ为参数). (1)设P为线段MN的中点,求直线OP的平面直角坐标方程; (2)判断直线l与圆C的位置关系.
已知数列为等差数列,数列为等比数列,若,且. (1)求数列,的通项公式; (2)是否存在,使得,若存在,求出所有满足条件的;若不存在,请说明理由.
如图,在直三棱柱中,,点分别为和的中点. (1)证明:平面; (2)平面MNC与平面MAC夹角的余弦值.
解关于x的不等式:().
函数,数列,满足0<<1,,数列满足, (Ⅰ)求函数的单调区间; (Ⅱ)求证:0<<<1; (Ⅲ)若且<,则当n≥2时,求证:>
已知函数. (Ⅰ)求的单调区间和极值; (Ⅱ)当时,不等式恒成立,求的范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号